After the dust settles, literally, from a vent and register cleaning, a thorough visual inspection is crucial. Its not enough to just assume everything is sparkling clean because the powerful vacuum did its thing. Think of it like cleaning your kitchen – you wouldnt just vacuum and walk away, would you? Youd check the countertops, the stovetop, make sure everything is truly clean. The same principle applies here.
A post-cleaning visual inspection of vents and registers is the final quality control check. It confirms the effectiveness of the cleaning process and ensures the system is ready for optimal airflow. This inspection should cover a few key areas. First, check the vent and register surfaces themselves. Are they free of dust and debris? Run a finger along the inside edges – any lingering dust bunnies? Look for any signs of residual build-up, especially in hard-to-reach corners.
Next, look beyond the surface. Peer into the ductwork as far as you can see. While you wont be able to inspect the entire duct system without specialized tools, a visual check can reveal any obvious obstructions or areas that might have been missed during cleaning. This is particularly important for larger debris like leaves or construction materials that can sometimes find their way into the system.
Finally, check the airflow. With the system turned on, feel the air coming out of each vent. Is it strong and consistent? Weak airflow could indicate a remaining blockage further down the ductwork or a problem with the HVAC system itself. This step helps ensure not only cleanliness but also proper system function.
In short, a post-cleaning visual inspection is a simple yet vital step. Its the final assurance that your vents and registers are truly clean, promoting healthy indoor air quality and efficient HVAC operation. It only takes a few minutes, but the peace of mind it provides is well worth the effort.
After a good cleaning, its tempting to just plug everything back in and get going. But taking a few minutes for a system performance check, specifically focusing on airflow and temperature, is crucial for maintaining the long-term health and efficiency of your equipment. Think of it like a post-op check-up – you want to make sure everything is running smoothly before putting it back under stress.
A clean system means dust and debris that were hindering airflow have been removed. This should translate to better cooling. So, how do we verify this? Start by powering on the system and closely monitoring the fans. Are they spinning freely and at the expected speeds? Loud or unusual noises could indicate a lingering issue, like a cable obstructing a fan blade, or even a failing fan motor. Dont ignore these signs – addressing them early can prevent bigger problems down the line.
Next, keep an eye on the temperature. Monitoring software, or even just touching the external casing (carefully!), can give you a sense of whether things are running cooler than before the cleaning. If you have access to temperature readings within the system BIOS or through operating system utilities, use them. Compare these post-cleaning temperatures to pre-cleaning readings, if you have them. A significant drop is a good sign. If temperatures remain high, or even increase, it's a red flag. Perhaps the cleaning wasnt thorough enough, or theres a deeper issue at play, like failing thermal paste on a processor.
Finally, pay attention to the overall system performance. Is it running smoother and faster? Are applications loading quicker? These are indirect indicators of improved airflow and temperature management. If performance hasnt improved, or has worsened, its a clear signal that something isnt right and further investigation is needed.
In short, a post-cleaning system performance check focused on airflow and temperature isnt just a good idea, its essential. Its a simple way to ensure your cleaning efforts were effective and to catch potential problems early, saving you headaches and potentially costly repairs down the road. Treat your equipment well, and it will return the favor with reliable performance.
Post-cleaning inspection isnt just about a shiny surface; its about ensuring the equipment is ready for its next challenge. A critical part of this process is Equipment Verification, specifically focusing on filter replacement and unit functionality. Think of it like an athlete getting a check-up after a tough game. Sure, they might look fine on the outside, but you need to make sure everything is working correctly under the hood.
Filter replacement is often the first order of business. Dirty filters can compromise performance, reduce efficiency, and even pose a safety hazard. During the post-cleaning inspection, we dont just glance at the filter; we verify that its been replaced with a fresh, clean one. This ensures optimal airflow, proper filtration, and prevents the re-circulation of contaminants. Its like giving the equipment fresh lungs.
Beyond filters, verifying unit functionality is essential. This involves a series of checks to ensure everything is operating as intended. Depending on the equipment, this might include testing power supply, checking for leaks, assessing moving parts, and confirming control settings. Imagine cleaning a powerful vacuum cleaner but forgetting to plug it back in. Clean, yes, but utterly useless. The same principle applies here. We meticulously examine the equipment to confirm its not just clean, but also fully functional and ready to perform its intended task.
In essence, equipment verification, with its emphasis on filter replacement and unit functionality, is the final quality control step. It transforms a simple cleaning into a comprehensive restoration, ensuring the equipment isnt just clean, but also safe, efficient, and ready to deliver optimal performance. Its about more than just appearances; its about ensuring the equipment is truly ready for whatever comes next.
The post-cleaning inspection is a crucial moment. Its the bridge between a completed cleaning job and a satisfied customer. And thats where the customer walkthrough and sign-off comes in. Its not just about ticking boxes on a checklist; its about building trust and ensuring everyone is on the same page.
Imagine this: the cleaning crew has just finished up a deep clean of an office. Everything sparkles, the air smells fresh, and the floors practically gleam. But the real test is the customer walkthrough. This is when the client, or their designated representative, walks through the cleaned space with the cleaning supervisor or manager. Its a collaborative process. The customer gets to see the results firsthand, point out any areas that might need a little extra attention, and ask questions. Maybe a window smudge was missed, or a corner wasnt quite as dust-free as theyd like. This is the opportunity to address those minor details before they become bigger issues.
The walkthrough isnt about finding fault; its about ensuring satisfaction. Its a chance for the cleaning team to demonstrate their commitment to quality and responsiveness. By addressing any concerns on the spot, they show the customer that their feedback is valued. This open communication fosters a positive relationship and builds confidence in the cleaning service.
Finally, the sign-off. This is more than just a signature on a piece of paper; its a confirmation of a job well done. It signifies that the customer is satisfied with the cleaning and agrees that it meets the agreed-upon standards. Its a sign of mutual understanding and a successful completion of the project. The customer walkthrough and sign-off is a simple yet powerful tool. Its a testament to the importance of communication, transparency, and a dedication to customer satisfaction in the cleaning industry.
A clothes dryer (tumble dryer, drying machine, or simply dryer) is a powered household appliance that is used to remove moisture from a load of clothing, bedding and other textiles, usually after they are washed in the washing machine.
Many dryers consist of a rotating drum called a "tumbler" through which heated air is circulated to evaporate moisture while the tumbler is rotated to maintain air space between the articles. Using such a machine may cause clothes to shrink or become less soft (due to loss of short soft fibers). A simpler non-rotating machine called a "drying cabinet" may be used for delicate fabrics and other items not suitable for a tumble dryer. Other machines include steam to de-shrink clothes and avoid ironing.[1]
Tumble dryers continuously draw in the ambient air around them and heat it before passing it through the tumbler. The resulting hot, humid air is usually vented outside to make room for more air to continue the drying process.
Tumble dryers are sometimes integrated with a washing machine, in the form of washer-dryer combos, which are essentially a front loading washing machine with an integrated dryer or (in the US) a laundry center, which stacks the dryer on top of the washer and integrates the controls for both machines into a single control panel. Often the washer and dryer functions will have a different capacity, with the dryer usually having a lower capacity than the washer. Tumble dryers can also be top loading, in which the drum is loaded from the top of the machine and the drum's end supports are in the left and right sides, instead of the more conventional front and rear. They can be as thin as 40 centimetres (16 in) in width, and may include detachable stationary racks for drying items like plush toys and footwear.[2]
These centrifuge machines simply spin their drums much faster than a typical washer could, in order to extract additional water from the load. They may remove more water in two minutes than a heated tumbler dryer can in twenty, thus saving significant amounts of time and energy. Although spinning alone will not completely dry clothing, this additional step saves a worthwhile amount of time and energy for large laundry operations such as those of hospitals.
Just as in a tumble dryer, condenser or condensation dryers pass heated air through the load. However, instead of exhausting this air, the dryer uses a heat exchanger to cool the air and condense the water vapor into either a drain pipe or a collection tank. The drier air is run through the loop again. The heat exchanger typically uses ambient air as its coolant, therefore the heat produced by the dryer will go into the immediate surroundings instead of the outside, increasing the room temperature. In some designs, cold water is used in the heat exchanger, eliminating this heating, but requiring increased water usage.
In terms of energy use, condenser dryers typically require around 2 kilowatt hours (kW⋅h) of energy per average load.[3]
Because the heat exchange process simply cools the internal air using ambient air (or cold water in some cases), it will not dry the air in the internal loop to as low a level of humidity as typical fresh, ambient air. As a consequence of the increased humidity of the air used to dry the load, this type of dryer requires somewhat more time than a tumble dryer. Condenser dryers are a particularly attractive option where long, intricate ducting would be required to vent the dryer.
A closed-cycle heat pump clothes dryer uses a heat pump to dehumidify the processing air. Such dryers typically use under half the energy per load of a condenser dryer.
Whereas condensation dryers use a passive heat exchanger cooled by ambient air, these dryers use a heat pump. The hot, humid air from the tumbler is passed through a heat pump where the cold side condenses the water vapor into either a drain pipe or a collection tank and the hot side reheats the air afterward for re-use. In this way not only does the dryer avoid the need for ducting, but it also conserves much of its heat within the dryer instead of exhausting it into the surroundings. Heat pump dryers can, therefore, use up to 50% less energy required by either condensation or conventional electric dryers. Heat pump dryers use about 1 kW⋅h of energy to dry an average load instead of 2 kW⋅h for a condenser dryer, or from 3 to 9 kW⋅h, for a conventional electric dryer.[4][5][3] Domestic heat pump dryers are designed to work in typical ambient temperatures from 5 to 30 °C (41 to 86 °F). Below 5 °C (41 °F), drying times significantly increase.
As with condensation dryers, the heat exchanger will not dry the internal air to as low a level of humidity as the typical ambient air. With respect to ambient air, the higher humidity of the air used to dry the clothes has the effect of increasing drying times; however, because heat pump dryers conserve much of the heat of the air they use, the already-hot air can be cycled more quickly, possibly leading to shorter drying times than tumble dryers, depending on the model.
A new type of dryer in development, these machines are a more advanced version of heat pump dryers. Instead of using hot air to dry the clothing, mechanical steam compression dryers use water recovered from the clothing in the form of steam. First, the tumbler and its contents are heated to 100 °C (212 °F). The wet steam that results purges the system of air and is the only remaining atmosphere in the tumbler.
As wet steam exits the tumbler, it is mechanically compressed (hence the name) to extract water vapor and transfer the heat of vaporization to the remaining gaseous steam. This pressurized, gaseous steam is then allowed to expand, and is superheated before being injected back into the tumbler where its heat causes more water to vaporize from the clothing, creating more wet steam and restarting the cycle.
Like heat pump dryers, mechanical steam compression dryers recycle much of the heat used to dry the clothes, and they operate in a very similar range of efficiency as heat pump dryers. Both types can be over twice as efficient as conventional tumble dryers. The considerably higher temperatures used in mechanical steam compression dryers result in drying times on the order of half as long as those of heat pump dryers.[6]
Marketed by some manufacturers as a "static clothes drying technique", convectant dryers simply consist of a heating unit at the bottom, a vertical chamber, and a vent at top. The unit heats air at the bottom, reducing its relative humidity, and the natural tendency of hot air to rise brings this low-humidity air into contact with the clothes. This design is slower than conventional tumble dryers, but relatively energy-efficient if well-implemented. It works particularly well in cold and humid environments, where it dries clothes substantially faster than line-drying. In hot and dry weather, the performance delta over line-drying is negligible.
Given that this is a relatively simple and cheap technique to materialize, most consumer products showcase the added benefit of portability and/or modularity. Newer designs implement a fan heater at the bottom to pump hot air into the vertical drying rack chamber. Temperatures in excess of 60 °C (140 °F) can be reached inside these "hot air balloons," yet lint, static cling, and shrinkage are minimal. Upfront cost is significantly lower than tumble, condenser and heat pump designs.
If used in combination with washing machines featuring fast spin cycles (800+ rpm) or spin dryers, the cost-effectiveness of this technique has the potential to render tumble dryer-like designs obsolete in single-person and small family households. One disadvantage is that the moisture from the clothes is released into the immediate surroundings. Proper ventilation or a complementary dehumidifier is recommended for indoor use. It also cannot compete with the tumble dryer's capacity to dry multiple loads of wet clothing in a single day.
The solar dryer is a box-shaped stationary construction which encloses a second compartment where the clothes are held. It uses the sun's heat without direct sunlight reaching the clothes. Alternatively, a solar heating box may be used to heat air that is driven through a conventional tumbler dryer.
Japanese manufacturers[7] have developed highly efficient clothes dryers that use microwave radiation to dry the clothes (though a vast majority of Japanese air dry their laundry). Most of the drying is done using microwaves to evaporate the water, but the final drying is done by convection heating, to avoid problems of arcing with metal pieces in the laundry.[8][9] There are a number of advantages: shorter drying times (25% less),[10] energy savings (17–25% less), and lower drying temperatures. Some analysts think that the arcing and fabric damage is a factor preventing microwave dryers from being developed for the US market.[11][12]
Ultrasonic dryers use high-frequency signals to drive piezoelectric actuators in order to mechanically shake the clothes, releasing water in the form of a mist which is then removed from the drum. They have the potential to significantly cut energy consumption while needing only one-third of the time needed by a conventional electric dryer for a given load.[13] They also do not have the same issues related with lint in most other types of dryers.[14]
Some manufacturers, like LG Electronics and Whirlpool, have introduced hybrid dryers, that offer the user the option of using either a heat pump or a traditional electric heating element for drying the user's clothes. Hybrid dryers can also use a heat pump and a heating element at the same time to dry clothes faster.
Clothes dryers can cause static cling through the triboelectric effect. This can be a minor nuisance and is often a symptom of over-drying textiles to below their equilibrium moisture level, particularly when using synthetic materials. Fabric conditioning products such as dryer sheets are marketed to dissipate this static charge, depositing surfactants onto the fabric load by mechanical abrasion during tumbling.[15] Modern dryers often have improved temperature and humidity sensors and electronic controls which aim to stop the drying cycle once textiles are sufficiently dry, avoiding over-drying and the static charge and energy wastage this causes.
Drying at a minimum of 60 °C (140 °F) heat for thirty minutes kills many parasites including house dust mites,[16] bed bugs,[17] and scabies mites[18] and their eggs; a bit more than ten minutes kills ticks.[19] Simply washing drowns dust mites, and exposure to direct sunlight for three hours kills their eggs.[16]
Moisture and lint are byproducts of the tumble drying process and are pulled from the drum by a fan motor and then pushed through the remaining exhaust conduit to the exterior termination fitting. Typical exhaust conduit comprises flex transition hose found immediately behind the dryer, the 4-inch (100 mm) rigid galvanized pipe and elbow fittings found within the wall framing, and the vent duct hood found outside the house.
A clean, unobstructed dryer vent improves both the efficiency and safety of the dryer. As the dryer duct pipe becomes partially obstructed and filled with lint, drying time markedly increases and causes the dryer to waste energy. A blocked vent increases the internal temperature and may result in a fire. Clothes dryers are one of the more costly home appliances to operate.[20]
Several factors can contribute to or accelerate rapid lint build-up. These include long or restrictive ducts, bird or rodent nests in the termination, crushed or kinked flex transition hose, terminations with screen-like features, and condensation within the duct due to un-insulated ducts traveling through cold spaces such as a crawl space or attic. If plastic flaps are at the outside end of the duct, one may be able to flex, bend, and temporarily remove the plastic flaps, clean the inside surface of the flaps, clean the last foot or so of the duct, and reattach the plastic flaps. The plastic flaps keep insects, birds, and snakes[21] out of the dryer vent pipe. During cold weather, the warm wet air condenses on the plastic flaps, and minor trace amounts of lint sticks to the wet inside part of the plastic flaps at the outside of the building.[22][23]
Ventless dryers include multi-stage lint filtration systems and some even include automatic evaporator and condenser cleaning functions that can run even while the dryer is running. The evaporator and condenser are usually cleaned with running water. These systems are necessary, in order to prevent lint from building up inside the dryer and evaporator and condenser coils.
Aftermarket add-on lint and moisture traps can be attached to the dryer duct pipe, on machines originally manufactured as outside-venting, to facilitate installation where an outside vent is not available. Increased humidity at the location of installation is a drawback to this method.[24]
Dryers expose flammable materials to heat. Underwriters Laboratories[25] recommends cleaning the lint filter after every cycle for safety and energy efficiency, provision of adequate ventilation, and cleaning of the duct at regular intervals.[26] UL also recommends that dryers not be used for glass fiber, rubber, foam or plastic items, or any item that has had a flammable substance spilled on it.
In the United States, an estimate from the US Fire Administration[27] in a 2012 report estimated that from 2008 to 2010, fire departments responded to an estimated 2,900 clothes dryer fires in residential buildings each year across the nation. These fires resulted in an annual average loss of 5 deaths, 100 injuries, and $35 million in property loss. The Fire Administration attributes "Failure to clean" (34%) as the leading factor contributing to clothes dryer fires in residential buildings, and observed that new home construction trends place clothes dryers and washing machines in more hazardous locations away from outside walls, such as in bedrooms, second-floor hallways, bathrooms, and kitchens.
To address the problem of clothes dryer fires, a fire suppression system can be used with sensors to detect the change in temperature when a blaze starts in a dryer drum. These sensors then activate a water vapor mechanism to put out the fire.[28]
The environmental impact of clothes dryers is especially severe in the US and Canada, where over 80% of all homes have a clothes dryer. According to the US Environmental Protection Agency, if all residential clothes dryers sold in the US were energy efficient, "the utility cost savings would grow to more than $1.5 billion each year and more than 10 billion kilograms (22 billion pounds) of annual greenhouse gas emissions would be prevented”.[29]
Clothes dryers are second only to refrigerators and freezers as the largest residential electrical energy consumers in America.[30]
In the European Union, the EU energy labeling system is applied to dryers; dryers are classified with a label from A+++ (best) to G (worst) according to the amount of energy used per kilogram of clothes (kW⋅h/kg). Sensor dryers can automatically sense that clothes are dry and switch off. This means over-drying is not as frequent. Most of the European market sells sensor dryers now, and they are normally available in condenser and vented dryers.
A hand-cranked clothes dryer was created in 1800 by M. Pochon from France.[31] Henry W. Altorfer invented and patented an electric clothes dryer in 1937.[32] J. Ross Moore, an inventor from North Dakota, developed designs for automatic clothes dryers and published his design for an electrically operated dryer in 1938.[33] Industrial designer Brooks Stevens developed an electric dryer with a glass window in the early 1940s.[34]
cite web
Air conditioning, often abbreviated as A/C (US) or air con (UK),[1] is the process of removing heat from an enclosed space to achieve a more comfortable interior temperature and in some cases also controlling the humidity of internal air. Air conditioning can be achieved using a mechanical 'air conditioner' or through other methods, including passive cooling and ventilative cooling.[2][3] Air conditioning is a member of a family of systems and techniques that provide heating, ventilation, and air conditioning (HVAC).[4] Heat pumps are similar in many ways to air conditioners but use a reversing valve, allowing them to both heat and cool an enclosed space.[5]
Air conditioners, which typically use vapor-compression refrigeration, range in size from small units used in vehicles or single rooms to massive units that can cool large buildings.[6] Air source heat pumps, which can be used for heating as well as cooling, are becoming increasingly common in cooler climates.
Air conditioners can reduce mortality rates due to higher temperature.[7] According to the International Energy Agency (IEA) 1.6 billion air conditioning units were used globally in 2016.[8] The United Nations called for the technology to be made more sustainable to mitigate climate change and for the use of alternatives, like passive cooling, evaporative cooling, selective shading, windcatchers, and better thermal insulation.
Air conditioning dates back to prehistory.[9] Double-walled living quarters, with a gap between the two walls to encourage air flow, were found in the ancient city of Hamoukar, in modern Syria.[10] Ancient Egyptian buildings also used a wide variety of passive air-conditioning techniques.[11] These became widespread from the Iberian Peninsula through North Africa, the Middle East, and Northern India.[12]
Passive techniques remained widespread until the 20th century when they fell out of fashion and were replaced by powered air conditioning. Using information from engineering studies of traditional buildings, passive techniques are being revived and modified for 21st-century architectural designs.[13][12]
Air conditioners allow the building's indoor environment to remain relatively constant, largely independent of changes in external weather conditions and internal heat loads. They also enable deep plan buildings to be created and have allowed people to live comfortably in hotter parts of the world.[14]
In 1558, Giambattista della Porta described a method of chilling ice to temperatures far below its freezing point by mixing it with potassium nitrate (then called "nitre") in his popular science book Natural Magic.[15][16][17] In 1620, Cornelis Drebbel demonstrated "Turning Summer into Winter" for James I of England, chilling part of the Great Hall of Westminster Abbey with an apparatus of troughs and vats.[18] Drebbel's contemporary Francis Bacon, like della Porta a believer in science communication, may not have been present at the demonstration, but in a book published later the same year, he described it as "experiment of artificial freezing" and said that "Nitre (or rather its spirit) is very cold, and hence nitre or salt when added to snow or ice intensifies the cold of the latter, the nitre by adding to its cold, but the salt by supplying activity to the cold of the snow."[15]
In 1758, Benjamin Franklin and John Hadley, a chemistry professor at the University of Cambridge, conducted experiments applying the principle of evaporation as a means to cool an object rapidly. Franklin and Hadley confirmed that the evaporation of highly volatile liquids (such as alcohol and ether) could be used to drive down the temperature of an object past the freezing point of water. They experimented with the bulb of a mercury-in-glass thermometer as their object. They used a bellows to speed up the evaporation. They lowered the temperature of the thermometer bulb down to −14 °C (7 °F) while the ambient temperature was 18 °C (64 °F). Franklin noted that soon after they passed the freezing point of water 0 °C (32 °F), a thin film of ice formed on the surface of the thermometer's bulb and that the ice mass was about 6 mm (1⁄4 in) thick when they stopped the experiment upon reaching −14 °C (7 °F). Franklin concluded: "From this experiment, one may see the possibility of freezing a man to death on a warm summer's day."[19]
The 19th century included many developments in compression technology. In 1820, English scientist and inventor Michael Faraday discovered that compressing and liquefying ammonia could chill air when the liquefied ammonia was allowed to evaporate.[20] In 1842, Florida physician John Gorrie used compressor technology to create ice, which he used to cool air for his patients in his hospital in Apalachicola, Florida. He hoped to eventually use his ice-making machine to regulate the temperature of buildings.[20][21] He envisioned centralized air conditioning that could cool entire cities. Gorrie was granted a patent in 1851,[22] but following the death of his main backer, he was not able to realize his invention.[23] In 1851, James Harrison created the first mechanical ice-making machine in Geelong, Australia, and was granted a patent for an ether vapor-compression refrigeration system in 1855 that produced three tons of ice per day.[24] In 1860, Harrison established a second ice company. He later entered the debate over competing against the American advantage of ice-refrigerated beef sales to the United Kingdom.[24]
Electricity made the development of effective units possible. In 1901, American inventor Willis H. Carrier built what is considered the first modern electrical air conditioning unit.[25][26][27][28] In 1902, he installed his first air-conditioning system, in the Sackett-Wilhelms Lithographing & Publishing Company in Brooklyn, New York.[29] His invention controlled both the temperature and humidity, which helped maintain consistent paper dimensions and ink alignment at the printing plant. Later, together with six other employees, Carrier formed The Carrier Air Conditioning Company of America, a business that in 2020 employed 53,000 people and was valued at $18.6 billion.[30][31]
In 1906, Stuart W. Cramer of Charlotte, North Carolina, was exploring ways to add moisture to the air in his textile mill. Cramer coined the term "air conditioning" in a patent claim which he filed that year, where he suggested that air conditioning was analogous to "water conditioning", then a well-known process for making textiles easier to process.[32] He combined moisture with ventilation to "condition" and change the air in the factories; thus, controlling the humidity that is necessary in textile plants. Willis Carrier adopted the term and incorporated it into the name of his company.[33]
Domestic air conditioning soon took off. In 1914, the first domestic air conditioning was installed in Minneapolis in the home of Charles Gilbert Gates. It is, however, possible that the considerable device (c. 2.1 m × 1.8 m × 6.1 m; 7 ft × 6 ft × 20 ft) was never used, as the house remained uninhabited[20] (Gates had already died in October 1913.)
In 1931, H.H. Schultz and J.Q. Sherman developed what would become the most common type of individual room air conditioner: one designed to sit on a window ledge. The units went on sale in 1932 at US$10,000 to $50,000 (the equivalent of $200,000 to $1,200,000 in 2024.)[20] A year later, the first air conditioning systems for cars were offered for sale.[34] Chrysler Motors introduced the first practical semi-portable air conditioning unit in 1935,[35] and Packard became the first automobile manufacturer to offer an air conditioning unit in its cars in 1939.[36]
Innovations in the latter half of the 20th century allowed more ubiquitous air conditioner use. In 1945, Robert Sherman of Lynn, Massachusetts, invented a portable, in-window air conditioner that cooled, heated, humidified, dehumidified, and filtered the air.[37] The first inverter air conditioners were released in 1980–1981.[38][39]
In 1954, Ned Cole, a 1939 architecture graduate from the University of Texas at Austin, developed the first experimental "suburb" with inbuilt air conditioning in each house. 22 homes were developed on a flat, treeless track in northwest Austin, Texas, and the community was christened the 'Austin Air-Conditioned Village.' The residents were subjected to a year-long study of the effects of air conditioning led by the nation’s premier air conditioning companies, builders, and social scientists. In addition, researchers from UT’s Health Service and Psychology Department studied the effects on the "artificially cooled humans." One of the more amusing discoveries was that each family reported being troubled with scorpions, the leading theory being that scorpions sought cool, shady places. Other reported changes in lifestyle were that mothers baked more, families ate heavier foods, and they were more apt to choose hot drinks.[40][41]
Air conditioner adoption tends to increase above around $10,000 annual household income in warmer areas.[42] Global GDP growth explains around 85% of increased air condition adoption by 2050, while the remaining 15% can be explained by climate change.[42]
As of 2016 an estimated 1.6 billion air conditioning units were used worldwide, with over half of them in China and USA, and a total cooling capacity of 11,675 gigawatts.[8][43] The International Energy Agency predicted in 2018 that the number of air conditioning units would grow to around 4 billion units by 2050 and that the total cooling capacity would grow to around 23,000 GW, with the biggest increases in India and China.[8] Between 1995 and 2004, the proportion of urban households in China with air conditioners increased from 8% to 70%.[44] As of 2015, nearly 100 million homes, or about 87% of US households, had air conditioning systems.[45] In 2019, it was estimated that 90% of new single-family homes constructed in the US included air conditioning (ranging from 99% in the South to 62% in the West).[46][47]
Cooling in traditional air conditioner systems is accomplished using the vapor-compression cycle, which uses a refrigerant's forced circulation and phase change between gas and liquid to transfer heat.[48][49] The vapor-compression cycle can occur within a unitary, or packaged piece of equipment; or within a chiller that is connected to terminal cooling equipment (such as a fan coil unit in an air handler) on its evaporator side and heat rejection equipment such as a cooling tower on its condenser side. An air source heat pump shares many components with an air conditioning system, but includes a reversing valve, which allows the unit to be used to heat as well as cool a space.[50]
Air conditioning equipment will reduce the absolute humidity of the air processed by the system if the surface of the evaporator coil is significantly cooler than the dew point of the surrounding air. An air conditioner designed for an occupied space will typically achieve a 30% to 60% relative humidity in the occupied space.[51]
Most modern air-conditioning systems feature a dehumidification cycle during which the compressor runs. At the same time, the fan is slowed to reduce the evaporator temperature and condense more water. A dehumidifier uses the same refrigeration cycle but incorporates both the evaporator and the condenser into the same air path; the air first passes over the evaporator coil, where it is cooled[52] and dehumidified before passing over the condenser coil, where it is warmed again before it is released back into the room.[citation needed]
Free cooling can sometimes be selected when the external air is cooler than the internal air. Therefore, the compressor does not need to be used, resulting in high cooling efficiencies for these times. This may also be combined with seasonal thermal energy storage.[53]
Some air conditioning systems can reverse the refrigeration cycle and act as an air source heat pump, thus heating instead of cooling the indoor environment. They are also commonly referred to as "reverse cycle air conditioners". The heat pump is significantly more energy-efficient than electric resistance heating, because it moves energy from air or groundwater to the heated space and the heat from purchased electrical energy. When the heat pump is in heating mode, the indoor evaporator coil switches roles and becomes the condenser coil, producing heat. The outdoor condenser unit also switches roles to serve as the evaporator and discharges cold air (colder than the ambient outdoor air).
Most air source heat pumps become less efficient in outdoor temperatures lower than 4 °C or 40 °F.[54] This is partly because ice forms on the outdoor unit's heat exchanger coil, which blocks air flow over the coil. To compensate for this, the heat pump system must temporarily switch back into the regular air conditioning mode to switch the outdoor evaporator coil back to the condenser coil, to heat up and defrost. Therefore, some heat pump systems will have electric resistance heating in the indoor air path that is activated only in this mode to compensate for the temporary indoor air cooling, which would otherwise be uncomfortable in the winter.
Newer models have improved cold-weather performance, with efficient heating capacity down to −14 °F (−26 °C).[55][54][56] However, there is always a chance that the humidity that condenses on the heat exchanger of the outdoor unit could freeze, even in models that have improved cold-weather performance, requiring a defrosting cycle to be performed.
The icing problem becomes much more severe with lower outdoor temperatures, so heat pumps are sometimes installed in tandem with a more conventional form of heating, such as an electrical heater, a natural gas, heating oil, or wood-burning fireplace or central heating, which is used instead of or in addition to the heat pump during harsher winter temperatures. In this case, the heat pump is used efficiently during milder temperatures, and the system is switched to the conventional heat source when the outdoor temperature is lower.
The coefficient of performance (COP) of an air conditioning system is a ratio of useful heating or cooling provided to the work required.[57][58] Higher COPs equate to lower operating costs. The COP usually exceeds 1; however, the exact value is highly dependent on operating conditions, especially absolute temperature and relative temperature between sink and system, and is often graphed or averaged against expected conditions.[59] Air conditioner equipment power in the U.S. is often described in terms of "tons of refrigeration", with each approximately equal to the cooling power of one short ton (2,000 pounds (910 kg) of ice melting in a 24-hour period. The value is equal to 12,000 BTUIT per hour, or 3,517 watts.[60] Residential central air systems are usually from 1 to 5 tons (3.5 to 18 kW) in capacity.[citation needed]
The efficiency of air conditioners is often rated by the seasonal energy efficiency ratio (SEER), which is defined by the Air Conditioning, Heating and Refrigeration Institute in its 2008 standard AHRI 210/240, Performance Rating of Unitary Air-Conditioning and Air-Source Heat Pump Equipment.[61] A similar standard is the European seasonal energy efficiency ratio (ESEER).[citation needed]
Efficiency is strongly affected by the humidity of the air to be cooled. Dehumidifying the air before attempting to cool it can reduce subsequent cooling costs by as much as 90 percent. Thus, reducing dehumidifying costs can materially affect overall air conditioning costs.[62]
This type of controller uses an infrared LED to relay commands from a remote control to the air conditioner. The output of the infrared LED (like that of any infrared remote) is invisible to the human eye because its wavelength is beyond the range of visible light (940 nm). This system is commonly used on mini-split air conditioners because it is simple and portable. Some window and ducted central air conditioners uses it as well.
A wired controller, also called a "wired thermostat," is a device that controls an air conditioner by switching heating or cooling on or off. It uses different sensors to measure temperatures and actuate control operations. Mechanical thermostats commonly use bimetallic strips, converting a temperature change into mechanical displacement, to actuate control of the air conditioner. Electronic thermostats, instead, use a thermistor or other semiconductor sensor, processing temperature change as electronic signals to control the air conditioner.
These controllers are usually used in hotel rooms because they are permanently installed into a wall and hard-wired directly into the air conditioner unit, eliminating the need for batteries.
* where the typical capacity is in kilowatt as follows:
Ductless systems (often mini-split, though there are now ducted mini-split) typically supply conditioned and heated air to a single or a few rooms of a building, without ducts and in a decentralized manner.[63] Multi-zone or multi-split systems are a common application of ductless systems and allow up to eight rooms (zones or locations) to be conditioned independently from each other, each with its indoor unit and simultaneously from a single outdoor unit.
The first mini-split system was sold in 1961 by Toshiba in Japan, and the first wall-mounted mini-split air conditioner was sold in 1968 in Japan by Mitsubishi Electric, where small home sizes motivated their development. The Mitsubishi model was the first air conditioner with a cross-flow fan.[64][65][66] In 1969, the first mini-split air conditioner was sold in the US.[67] Multi-zone ductless systems were invented by Daikin in 1973, and variable refrigerant flow systems (which can be thought of as larger multi-split systems) were also invented by Daikin in 1982. Both were first sold in Japan.[68] Variable refrigerant flow systems when compared with central plant cooling from an air handler, eliminate the need for large cool air ducts, air handlers, and chillers; instead cool refrigerant is transported through much smaller pipes to the indoor units in the spaces to be conditioned, thus allowing for less space above dropped ceilings and a lower structural impact, while also allowing for more individual and independent temperature control of spaces. The outdoor and indoor units can be spread across the building.[69] Variable refrigerant flow indoor units can also be turned off individually in unused spaces.[citation needed] The lower start-up power of VRF's DC inverter compressors and their inherent DC power requirements also allow VRF solar-powered heat pumps to be run using DC-providing solar panels.
Split-system central air conditioners consist of two heat exchangers, an outside unit (the condenser) from which heat is rejected to the environment and an internal heat exchanger (the evaporator, or Fan Coil Unit, FCU) with the piped refrigerant being circulated between the two. The FCU is then connected to the spaces to be cooled by ventilation ducts.[70] Floor standing air conditioners are similar to this type of air conditioner but sit within spaces that need cooling.
Large central cooling plants may use intermediate coolant such as chilled water pumped into air handlers or fan coil units near or in the spaces to be cooled which then duct or deliver cold air into the spaces to be conditioned, rather than ducting cold air directly to these spaces from the plant, which is not done due to the low density and heat capacity of air, which would require impractically large ducts. The chilled water is cooled by chillers in the plant, which uses a refrigeration cycle to cool water, often transferring its heat to the atmosphere even in liquid-cooled chillers through the use of cooling towers. Chillers may be air- or liquid-cooled.[71][72]
A portable system has an indoor unit on wheels connected to an outdoor unit via flexible pipes, similar to a permanently fixed installed unit (such as a ductless split air conditioner).
Hose systems, which can be monoblock or air-to-air, are vented to the outside via air ducts. The monoblock type collects the water in a bucket or tray and stops when full. The air-to-air type re-evaporates the water, discharges it through the ducted hose, and can run continuously. Many but not all portable units draw indoor air and expel it outdoors through a single duct, negatively impacting their overall cooling efficiency.
Many portable air conditioners come with heat as well as a dehumidification function.[73]
The packaged terminal air conditioner (PTAC), through-the-wall, and window air conditioners are similar. These units are installed on a window frame or on a wall opening. The unit usually has an internal partition separating its indoor and outdoor sides, which contain the unit's condenser and evaporator, respectively. PTAC systems may be adapted to provide heating in cold weather, either directly by using an electric strip, gas, or other heaters, or by reversing the refrigerant flow to heat the interior and draw heat from the exterior air, converting the air conditioner into a heat pump. They may be installed in a wall opening with the help of a special sleeve on the wall and a custom grill that is flush with the wall and window air conditioners can also be installed in a window, but without a custom grill.[74]
Packaged air conditioners (also known as self-contained units)[75][76] are central systems that integrate into a single housing all the components of a split central system, and deliver air, possibly through ducts, to the spaces to be cooled. Depending on their construction they may be outdoors or indoors, on roofs (rooftop units),[77][78] draw the air to be conditioned from inside or outside a building and be water or air-cooled. Often, outdoor units are air-cooled while indoor units are liquid-cooled using a cooling tower.[70][79][80][81][82][83]
medium (large capacity)
This compressor consists of a crankcase, crankshaft, piston rod, piston, piston ring, cylinder head and valves. [citation needed]
This compressor uses two interleaving scrolls to compress the refrigerant.[84] it consists of one fixed and one orbiting scrolls. This type of compressor is more efficient because it has 70 percent less moving parts than a reciprocating compressor. [citation needed]
This compressor use two very closely meshing spiral rotors to compress the gas. The gas enters at the suction side and moves through the threads as the screws rotate. The meshing rotors force the gas through the compressor, and the gas exits at the end of the screws. The working area is the inter-lobe volume between the male and female rotors. It is larger at the intake end, and decreases along the length of the rotors until the exhaust port. This change in volume is the compression. [citation needed]
There are several ways to modulate the cooling capacity in refrigeration or air conditioning and heating systems. The most common in air conditioning are: on-off cycling, hot gas bypass, use or not of liquid injection, manifold configurations of multiple compressors, mechanical modulation (also called digital), and inverter technology. [citation needed]
Hot gas bypass involves injecting a quantity of gas from discharge to the suction side. The compressor will keep operating at the same speed, but due to the bypass, the refrigerant mass flow circulating with the system is reduced, and thus the cooling capacity. This naturally causes the compressor to run uselessly during the periods when the bypass is operating. The turn down capacity varies between 0 and 100%.[85]
Several compressors can be installed in the system to provide the peak cooling capacity. Each compressor can run or not in order to stage the cooling capacity of the unit. The turn down capacity is either 0/33/66 or 100% for a trio configuration and either 0/50 or 100% for a tandem.[citation needed]
This internal mechanical capacity modulation is based on periodic compression process with a control valve, the two scroll set move apart stopping the compression for a given time period. This method varies refrigerant flow by changing the average time of compression, but not the actual speed of the motor. Despite an excellent turndown ratio – from 10 to 100% of the cooling capacity, mechanically modulated scrolls have high energy consumption as the motor continuously runs.[citation needed]
This system uses a variable-frequency drive (also called an Inverter) to control the speed of the compressor. The refrigerant flow rate is changed by the change in the speed of the compressor. The turn down ratio depends on the system configuration and manufacturer. It modulates from 15 or 25% up to 100% at full capacity with a single inverter from 12 to 100% with a hybrid tandem. This method is the most efficient way to modulate an air conditioner's capacity. It is up to 58% more efficient than a fixed speed system.[citation needed]
In hot weather, air conditioning can prevent heat stroke, dehydration due to excessive sweating, electrolyte imbalance, kidney failure, and other issues due to hyperthermia.[8][86] Heat waves are the most lethal type of weather phenomenon in the United States.[87][88] A 2020 study found that areas with lower use of air conditioning correlated with higher rates of heat-related mortality and hospitalizations.[89] The August 2003 France heatwave resulted in approximately 15,000 deaths, where 80% of the victims were over 75 years old. In response, the French government required all retirement homes to have at least one air-conditioned room at 25 °C (77 °F) per floor during heatwaves.[8]
Air conditioning (including filtration, humidification, cooling and disinfection) can be used to provide a clean, safe, hypoallergenic atmosphere in hospital operating rooms and other environments where proper atmosphere is critical to patient safety and well-being. It is sometimes recommended for home use by people with allergies, especially mold.[90][91] However, poorly maintained water cooling towers can promote the growth and spread of microorganisms such as Legionella pneumophila, the infectious agent responsible for Legionnaires' disease. As long as the cooling tower is kept clean (usually by means of a chlorine treatment), these health hazards can be avoided or reduced. The state of New York has codified requirements for registration, maintenance, and testing of cooling towers to protect against Legionella.[92]
First designed to benefit targeted industries such as the press as well as large factories, the invention quickly spread to public agencies and administrations with studies with claims of increased productivity close to 24% in places equipped with air conditioning.[93]
Air conditioning caused various shifts in demography, notably that of the United States starting from the 1970s. In the US, the birth rate was lower in the spring than during other seasons until the 1970s but this difference then declined since then.[94] As of 2007, the Sun Belt contained 30% of the total US population while it was inhabited by 24% of Americans at the beginning of the 20th century.[95] Moreover, the summer mortality rate in the US, which had been higher in regions subject to a heat wave during the summer, also evened out.[7]
The spread of the use of air conditioning acts as a main driver for the growth of global demand of electricity.[96] According to a 2018 report from the International Energy Agency (IEA), it was revealed that the energy consumption for cooling in the United States, involving 328 million Americans, surpasses the combined energy consumption of 4.4 billion people in Africa, Latin America, the Middle East, and Asia (excluding China).[8] A 2020 survey found that an estimated 88% of all US households use AC, increasing to 93% when solely looking at homes built between 2010 and 2020.[97]
Space cooling including air conditioning accounted globally for 2021 terawatt-hours of energy usage in 2016 with around 99% in the form of electricity, according to a 2018 report on air-conditioning efficiency by the International Energy Agency.[8] The report predicts an increase of electricity usage due to space cooling to around 6200 TWh by 2050,[8][98] and that with the progress currently seen, greenhouse gas emissions attributable to space cooling will double: 1,135 million tons (2016) to 2,070 million tons.[8] There is some push to increase the energy efficiency of air conditioners. United Nations Environment Programme (UNEP) and the IEA found that if air conditioners could be twice as effective as now, 460 billion tons of GHG could be cut over 40 years.[99] The UNEP and IEA also recommended legislation to decrease the use of hydrofluorocarbons, better building insulation, and more sustainable temperature-controlled food supply chains going forward.[99]
Refrigerants have also caused and continue to cause serious environmental issues, including ozone depletion and climate change, as several countries have not yet ratified the Kigali Amendment to reduce the consumption and production of hydrofluorocarbons.[100] CFCs and HCFCs refrigerants such as R-12 and R-22, respectively, used within air conditioners have caused damage to the ozone layer,[101] and hydrofluorocarbon refrigerants such as R-410A and R-404A, which were designed to replace CFCs and HCFCs, are instead exacerbating climate change.[102] Both issues happen due to the venting of refrigerant to the atmosphere, such as during repairs. HFO refrigerants, used in some if not most new equipment, solve both issues with an ozone damage potential (ODP) of zero and a much lower global warming potential (GWP) in the single or double digits vs. the three or four digits of hydrofluorocarbons.[103]
Hydrofluorocarbons would have raised global temperatures by around 0.3–0.5 °C (0.5–0.9 °F) by 2100 without the Kigali Amendment. With the Kigali Amendment, the increase of global temperatures by 2100 due to hydrofluorocarbons is predicted to be around 0.06 °C (0.1 °F).[104]
Alternatives to continual air conditioning include passive cooling, passive solar cooling, natural ventilation, operating shades to reduce solar gain, using trees, architectural shades, windows (and using window coatings) to reduce solar gain.[citation needed]
Socioeconomic groups with a household income below around $10,000 tend to have a low air conditioning adoption,[42] which worsens heat-related mortality.[7] The lack of cooling can be hazardous, as areas with lower use of air conditioning correlate with higher rates of heat-related mortality and hospitalizations.[89] Premature mortality in NYC is projected to grow between 47% and 95% in 30 years, with lower-income and vulnerable populations most at risk.[89] Studies on the correlation between heat-related mortality and hospitalizations and living in low socioeconomic locations can be traced in Phoenix, Arizona,[105] Hong Kong,[106] China,[106] Japan,[107] and Italy.[108][109] Additionally, costs concerning health care can act as another barrier, as the lack of private health insurance during a 2009 heat wave in Australia, was associated with heat-related hospitalization.[109]
Disparities in socioeconomic status and access to air conditioning are connected by some to institutionalized racism, which leads to the association of specific marginalized communities with lower economic status, poorer health, residing in hotter neighborhoods, engaging in physically demanding labor, and experiencing limited access to cooling technologies such as air conditioning.[109] A study overlooking Chicago, Illinois, Detroit, and Michigan found that black households were half as likely to have central air conditioning units when compared to their white counterparts.[110] Especially in cities, Redlining creates heat islands, increasing temperatures in certain parts of the city.[109] This is due to materials heat-absorbing building materials and pavements and lack of vegetation and shade coverage.[111] There have been initiatives that provide cooling solutions to low-income communities, such as public cooling spaces.[8][111]
Buildings designed with passive air conditioning are generally less expensive to construct and maintain than buildings with conventional HVAC systems with lower energy demands.[112] While tens of air changes per hour, and cooling of tens of degrees, can be achieved with passive methods, site-specific microclimate must be taken into account, complicating building design.[12]
Many techniques can be used to increase comfort and reduce the temperature in buildings. These include evaporative cooling, selective shading, wind, thermal convection, and heat storage.[113]
Passive ventilation is the process of supplying air to and removing air from an indoor space without using mechanical systems. It refers to the flow of external air to an indoor space as a result of pressure differences arising from natural forces.
There are two types of natural ventilation occurring in buildings: wind driven ventilation and buoyancy-driven ventilation. Wind driven ventilation arises from the different pressures created by wind around a building or structure, and openings being formed on the perimeter which then permit flow through the building. Buoyancy-driven ventilation occurs as a result of the directional buoyancy force that results from temperature differences between the interior and exterior.[114]
Passive cooling is a building design approach that focuses on heat gain control and heat dissipation in a building in order to improve the indoor thermal comfort with low or no energy consumption.[115][116] This approach works either by preventing heat from entering the interior (heat gain prevention) or by removing heat from the building (natural cooling).[117]
Natural cooling utilizes on-site energy, available from the natural environment, combined with the architectural design of building components (e.g. building envelope), rather than mechanical systems to dissipate heat.[118] Therefore, natural cooling depends not only on the architectural design of the building but on how the site's natural resources are used as heat sinks (i.e. everything that absorbs or dissipates heat). Examples of on-site heat sinks are the upper atmosphere (night sky), the outdoor air (wind), and the earth/soil.
Passive daytime radiative cooling (PDRC) surfaces reflect incoming solar radiation and heat back into outer space through the infrared window for cooling during the daytime. Daytime radiative cooling became possible with the ability to suppress solar heating using photonic structures, which emerged through a study by Raman et al. (2014).[122] PDRCs can come in a variety of forms, including paint coatings and films, that are designed to be high in solar reflectance and thermal emittance.[121][123]
PDRC applications on building roofs and envelopes have demonstrated significant decreases in energy consumption and costs.[123] In suburban single-family residential areas, PDRC application on roofs can potentially lower energy costs by 26% to 46%.[124] PDRCs are predicted to show a market size of ~$27 billion for indoor space cooling by 2025 and have undergone a surge in research and development since the 2010s.[125][126]
Hand fans have existed since prehistory. Large human-powered fans built into buildings include the punkah.
The 2nd-century Chinese inventor Ding Huan of the Han dynasty invented a rotary fan for air conditioning, with seven wheels 3 m (10 ft) in diameter and manually powered by prisoners.[127]: 99, 151, 233 In 747, Emperor Xuanzong (r. 712–762) of the Tang dynasty (618–907) had the Cool Hall (Liang Dian 涼殿) built in the imperial palace, which the Tang Yulin describes as having water-powered fan wheels for air conditioning as well as rising jet streams of water from fountains. During the subsequent Song dynasty (960–1279), written sources mentioned the air conditioning rotary fan as even more widely used.[127]: 134, 151â€ÅÂÂ
In areas that are cold at night or in winter, heat storage is used. Heat may be stored in earth or masonry; air is drawn past the masonry to heat or cool it.[13]
In areas that are below freezing at night in winter, snow and ice can be collected and stored in ice houses for later use in cooling.[13] This technique is over 3,700 years old in the Middle East.[128] Harvesting outdoor ice during winter and transporting and storing for use in summer was practiced by wealthy Europeans in the early 1600s,[15] and became popular in Europe and the Americas towards the end of the 1600s.[129] This practice was replaced by mechanical compression-cycle icemakers.
In dry, hot climates, the evaporative cooling effect may be used by placing water at the air intake, such that the draft draws air over water and then into the house. For this reason, it is sometimes said that the fountain, in the architecture of hot, arid climates, is like the fireplace in the architecture of cold climates.[11] Evaporative cooling also makes the air more humid, which can be beneficial in a dry desert climate.[130]
Evaporative coolers tend to feel as if they are not working during times of high humidity, when there is not much dry air with which the coolers can work to make the air as cool as possible for dwelling occupants. Unlike other types of air conditioners, evaporative coolers rely on the outside air to be channeled through cooler pads that cool the air before it reaches the inside of a house through its air duct system; this cooled outside air must be allowed to push the warmer air within the house out through an exhaust opening such as an open door or window.[131]
cite book
In our method I shall observe what our ancestors have said; then I shall show by my own experience, whether they be true or false
Cornelius Drebbel air conditioning.
Though he did not actually invent air-conditioning nor did he take the first documented scientific approach to applying it, Willis Carrier is credited with integrating the scientific method, engineering, and business of this developing technology and creating the industry we know today as air-conditioning.
Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming.
Redirect to:
My technician Ty was timely, friendly knowledgeable & professional. I will recommend him to my family & friends.
Thank you for coming within two days of my call. Ty was on time, polite and knowledgeable. I hope my neighbors will make use of your business card I gave them and I plan to call you again.
Good evening, I would like to express my sincerest thank you to your company for having such a customer service oriented employee. He not only made improvements to my unit he went above and beyond his job! He’s is definitely a dedicated and knowledgeable employee. Thank you much for sending him today!
Ty did a good job of cleaning and repairing our dryer vent. I was surprised to see the wear and tear, but he showed me photographs of what was going on and what needed to be done. We appreciate his service.
https://www.google.com/maps/dir/?api=1&origin=27.75291966459,-82.36967128621&destination=Dependable+air+duct+%26+dryer+vent+cleaning%2C+112+Harbor+Village+Ln%2C+Apollo+Beach%2C+FL+33572%2C+USA&destination_place_id=ChIJnXts_OvZwogR2PTvqw8QIXY&travelmode=driving&query=Commercial+dryer+vent+cleaning+Apollo+Beach
https://www.google.com/maps/dir/?api=1&origin=27.709129542987,-82.432131261373&destination=Dependable+air+duct+%26+dryer+vent+cleaning%2C+112+Harbor+Village+Ln%2C+Apollo+Beach%2C+FL+33572%2C+USA&destination_place_id=ChIJnXts_OvZwogR2PTvqw8QIXY&travelmode=driving&query=Dryer+vent+cleaning
https://www.google.com/maps/dir/?api=1&origin=27.784655023593,-82.350198853858&destination=Dependable+air+duct+%26+dryer+vent+cleaning%2C+112+Harbor+Village+Ln%2C+Apollo+Beach%2C+FL+33572%2C+USA&destination_place_id=ChIJnXts_OvZwogR2PTvqw8QIXY&travelmode=driving&query=Apollo+Beach+dryer+vent+cleaning
https://www.google.com/maps/dir/?api=1&origin=27.758918588778,-82.394042923087&destination=Dependable+air+duct+%26+dryer+vent+cleaning%2C+112+Harbor+Village+Ln%2C+Apollo+Beach%2C+FL+33572%2C+USA&destination_place_id=ChIJnXts_OvZwogR2PTvqw8QIXY&travelmode=driving&query=Dryer+vent+repair+Apollo+Beach
https://www.google.com/maps/dir/?api=1&origin=27.744348429642,-82.460039286408&destination=Dependable+air+duct+%26+dryer+vent+cleaning%2C+112+Harbor+Village+Ln%2C+Apollo+Beach%2C+FL+33572%2C+USA&destination_place_id=ChIJnXts_OvZwogR2PTvqw8QIXY&travelmode=driving&query=Prevent+dryer+fires+Apollo+Beach
https://www.google.com/maps/dir/?api=1&origin=27.756665689556,-82.481218356847&destination=Dependable+air+duct+%26+dryer+vent+cleaning%2C+112+Harbor+Village+Ln%2C+Apollo+Beach%2C+FL+33572%2C+USA&destination_place_id=ChIJnXts_OvZwogR2PTvqw8QIXY&travelmode=driving&query=Efficient+dryer+vent+cleaning
https://www.google.com/maps/dir/?api=1&origin=27.705703641871,-82.385630308061&destination=Dependable+air+duct+%26+dryer+vent+cleaning%2C+112+Harbor+Village+Ln%2C+Apollo+Beach%2C+FL+33572%2C+USA&destination_place_id=ChIJnXts_OvZwogR2PTvqw8QIXY&travelmode=driving&query=Dryer+vent+maintenance
https://www.google.com/maps/dir/?api=1&origin=27.769128929556,-82.436059579051&destination=Dependable+air+duct+%26+dryer+vent+cleaning%2C+112+Harbor+Village+Ln%2C+Apollo+Beach%2C+FL+33572%2C+USA&destination_place_id=ChIJnXts_OvZwogR2PTvqw8QIXY&travelmode=driving&query=Dryer+duct+cleaning
https://www.google.com/maps/dir/?api=1&origin=27.786274195315,-82.425620027239&destination=Dependable+air+duct+%26+dryer+vent+cleaning%2C+112+Harbor+Village+Ln%2C+Apollo+Beach%2C+FL+33572%2C+USA&destination_place_id=ChIJnXts_OvZwogR2PTvqw8QIXY&travelmode=driving&query=Air+duct+cleaning+Apollo+Beach
https://www.google.com/maps/dir/?api=1&origin=27.77037172466,-82.386278902808&destination=Dependable+air+duct+%26+dryer+vent+cleaning%2C+112+Harbor+Village+Ln%2C+Apollo+Beach%2C+FL+33572%2C+USA&destination_place_id=ChIJnXts_OvZwogR2PTvqw8QIXY&travelmode=driving&query=Clean+dryer+vent+Apollo+Beach